A comparison of human skeleton extractors for real-time human-robot interaction

Wanchen Ll^[1]
Robin Passama^[1]
Vincent Bonnet^[2]
Andrea Cherubini^[1]

¹ LIRMM UM/ CNRS, Montpellier, France ² LAAS-CNRS, Toulouse, France

Motivation:

Safety insurance

Multi-modal data for activity recognition:

- Limited for atomic actions

3D silhouette

- recognition
 Occlusion will
 degrade the
 - will
- Space-time occupancy pattern
- Pattern can be sparse.High computation
- Space-Time Occupancy Pattern
- 3D optical flow L

 Computationally costly
- Not suitable for real time application
- 30 sens flow

Local spatial Skelet temporal •

- + No need for subject size
- tracking
 The feature is view-

features

- dependent and local -

Skeletal data

- + Invariant to the camera location,
- subject appearance and human body size
- + Can be combined with biomechanical
- Current estimation algorithm is not
- Current estimation algorithm is not perfect

Skeleton extraction frameworks comparison:

General t	unction	alitv
-----------	---------	-------

Skeleton extractors	Framework	Output	Techniaue	Specialty	
Detectron2	Pytorch	17 key-points	Segmentation on each key-point, one-step estimation	Segmentation	
MediaPipe	Tensorflow	33 key-points with 3d inference	Two-step estimation, region of interest detector + joint position tracker	Joint position tracking	
YOP _V 7	Pytorch	17 key-points	One-step estimation	Occlusion does not influence detection	
ALPHA POSE	Pytorch	17/26/136 key-points	Two-step estimation	Pose aware identity mechanism	
Caffe 15/18/25/67/13 key-points	15/18/25/67/137 key-points	Two-step estimation, Using part affinity fields	Direct C++ API is available 3D estimation is possible upon multiple synchronized camera views		

Performance evaluation:

Skeleton extractors	Identification	Multi- person detection	Foot keypoints	Hand keypoints	Facial keypoints	Easy C++ interfacing	Robustness with respect to motion	GPU integration	Framerate
Detectron2	×	✓	×	×	ears,eyes,nose	×	✓	✓	3.57 fps
Mediapipe	✓	×	✓	✓	ears,eyes, nose,mouth	×	×	√on Linux	17 fps
YOLOv7	×	✓	×	×	ears,eyes,nose	×	✓	✓	11.04 fps
Alphapose	✓	✓	×	×	ears,eyes, nose,mouth	×	✓	✓	9.74 fps
Openpose	×	✓	✓	✓	ears,eyes, nose,mouth	✓	✓	✓	9.91 fps

Future work:

- Quantitative comparison of 5 frameworks' outputs
- Using OpenPose library with human biomechanical model to estimate human skeleton on image inputs in real-time
- Human activity classification based on joint space information

